
TECHNOLOGIES ENABLING AGILE
MANUFACTURING

(TEAM)
INTELLIGENT CLOSED LOOP PROCESSING

Open Architecture Specification

Part 1: General Information

January 11, 1996

CONTENTS

FOREWORD ... iv

BACKGROUND ... v

TEAM API SYSTEM ENVIRONMENT .. vi

TEAM ICLP - OPEN MODULAR ARCHITECTURE CONTROLLER: EXAMPLEix

1 GENERAL...1

1.1 SCOPE...1
1.2 OBJECT OF THE SPECIFICATION...1
1.3 OBJECT OF PART I .. 2
1.4 NORMATIVE REFERENCES..2

2 DEFINITIONS .. 3

3 GLOSSARY... 4

4 DEVELOPMENT AND INTEGRATION LIFE CYCLE MODEL ...5

4.1 CONTROL COMPONENT SUPPLIERS’ TASKS...6
4.1.1 Services Required from Other Modules..7
4.1.2 Services Provided..7
4.1.3 Module Source Codes...7
4.1.4 Define Modules & Services..7
4.1.5 Module Definition..7
4.1.6 Binary Modules.. 8

4.2 TEAM API WORKGROUP TASKS... 8
4.2.1 Define Classes... 8

4.3 CONTROL SYSTEM INTEGRATORS’ TASKS..9
4.3.1 Build Module Database..10
4.3.2 Module Definition Database... 10
4.3.3 Create Modules..11
4.3.4 System Module Database...11
4.3.5 Initialize and Configure Modules.. 11
4.3.6 Create System Resource Model.. 11
4.3.7 System Resource Model...11
4.3.8 Design System.. 11
4.3.9 System Model... 12
4.3.10 Configure & Integrate System.. 12
4.3.11 System Capability Database.. 12
4.3.12 System Binary Database..12
4.3.13 System Initialization Database... 12

4.4 END USERS’ TASKS..12
4.4.1 Start System... 13
4.4.2 System Directory...13
4.4.3 Run System.. 13
4.4.4 Create Application Programs... 14
4.4.5 Application Programs...14

ANNEX A ..15

A.1 CONFIGURATION - BASE AND DERIVED CLASS API STRATEGY - SUBCLASSING..............................15
A.2 INTEGRATION - MODULE CONNECTIONS..17

Foreword

This draft document has been prepared by the Technologies Enabling Agile Manufacturing
(TEAM) Intelligent Closed Loop Processing (ICLP) Application Programming Interface (API)
working group. The TEAM API working group developed a specification that will consist of the
following series of documents:

Part 1: General Information

Part 2: Module Capabilities

Part 3: Module Specification Class Descriptions

Part 4: Module Specification C++ Header Files

Part 1 includes a Life Cycle model that describes the steps and actions required to build a
controller. The breadth of satisfying Plug-and-Play compatibility is extensive. Not all elements in
the Life Cycle have been addressed. The focus of the effort has been on defining Application
Programming Interfaces for certain modules routinely that the ICLP community wants to
upgrade. The TEAM API effort discusses but does NOT attempt to specify procedures for such
issues as:

− performance evaluation

− validation, verification

− resource profiling and environment

This specification is scaleable for the system design, integration and programming for systems
ranging from a single-axis device to a multi-arm robot. The TEAM API working group focus was
programming requirements for precision machining. Applicability to other control environments
may be possible but cannot be guaranteed.

Background

Most CNC, motion and discrete control applications incorporate proprietary control technologies
that have associated problems: non-common interfaces, higher-integration costs, and specialized
training. On the other hand, an open-architecture controller is built from multi-vendor, plug-
compatible modules and component parts. The operation to build a controller from module
components is multi-faceted and includes the following major elements:

− User defines “initial conditions” such as hardware, control devices, and computing
platforms that in general constitute the application resources.

− Platform supplies system low-level services (e.g., file-management, etc.)

− Integrator connects selected modules together via standard integration and
configuration techniques.

− Analysis checks compliance of modules to support user-specification of performance
and timing requirements.

− Flexibility of modules provides default or minimal functionality where user has not
selected any.

− Scalability of modules allows convenient methods of experimentation - to reconfigure
modules quickly; and optionally, capture results in order to analyze the
experimentation.

These operations form the basis for the open architecture requirements which are:

Open

Allows the integration of off-the-shelf hardware and software components into a controller
infrastructure that supports a “de facto” standard environment.

Modular

Refers to the ability of controls users and system integrators to purchase and replace
components of the controller without adversely affecting the rest of the controller nor
requiring extended integration engineering effort, permitting “plug and play” of a limited
number of components for selected controller functions.

Extendible

Refers to the ability of intelligent users and third parties to incrementally add functionality
to a module without replacing it completely.

Portable

Refers to the ease with which a module can run across platforms. Standards such as ANSI
C and POSIX serve as a reference to which programmers adhere.

Scaleable

Like portability, refers to the ease with which a module can run in a controller based on
another platform, but unlike portability, scalability allows different performance based on
the platform selection. Scalability means that a controller may be implemented as easily
and efficiently by systems integrators on a high-speed processor, as a distributed multi-
processor system, or on a standalone PC to meet specific application needs.

Maintainable

Supports robust plant floor operation (maximum uptime), expeditious repair (minimal
downtime), and easy maintenance (extensive support from controller suppliers, small spare
parts inventory, integrated self-diagnostic and help functions, etc.)

Economical

Allows the manufacturing equipment and systems that the controller controls achieve low
life cycle cost.

TEAM API System Environment

The Open, Modular Architecture Controller (OMAC)1 defines the system requirements for an
Open-architecture, Application Environment that includes Platform and Infrastructure, Core
Modules, and a standard Application Programming Interface to the Core Modules. Using the
OMAC model as a baseline, Figure 1 specifies the modules in a standard environment.

Adhering to the Open Architecture requirements, modules can be added, removed, and extended
based on the functionality required (extensibility), be replaced by other modules with equivalent
functionality but at different performance level (scalability & modularity), and are operating
environment independent (portability).

The modules have the following responsibilities:

Part Program Interpreter

Part Program Interpreters are responsible for translating the part program into control
sequences.

1. Initial requirements defined in White Paper jointly co-written by GM, FORD, and Chrysler

Task Coordinator

Task Coordinators are responsible for sequencing operations and coordinating motion,
sensing, and event-driven control processes.

Axis Group

Axis Groups are responsible for coordinating the motions of individual axes.

Part
Interpreter

API

Axis
 Group

API

Task
Coordination

API

User Defined
Process

API

Axis

API

Human Interface
Agent

API

Discrete
Control

API

Axis
Control Laws

API

Communicaton

API

Note : Shaded API - work in
progress

 IO Points

API

Figure 1. Major Module Types

Axis

Axes are responsible for motion control.

Kinematics Model

Kinematics Models are responsible for kinematics configuration, geometric correction,
thermal compensation, tool offsets, and the effects of tool wear.

Control Law

Control Laws are responsible loop closure calculations to close the motion loop.

Human Interface Agent

Human Interface Agents are responsible for the data access between controller internal
modules and appropriate mirrored graphical user interface objects in an Operator Interface
environment outside of the controller.

I/O Points

I/O Points are responsible for the reading of input devices and writing of the output devices
through a generic read/write interface.

Communication

Communication modules are responsible for both local area communications and sensor
effector bus communications.

TEAM ICLP - Open Modular Architecture Controller: Example

Figure 2 illustrates the major systems of a controller as they might be configured for a typical
numerical control application.

Axis Control 1

Human
Interface

I/O Point
Feedrate Override

Part Program
Interpreter

Task Coordinator

Axis Group

Axis Control 1

I/O PT

HW1

I/O PT

HW2

I/O Pts

Limit+
Limit-
Home
Amp-
Fault

I/O PT

Amp-
Enable

I/O Pts

RESET
E STOP
POWER-

UP

I/O Pts

Sensor 1
Sensor 2

I/O PT

E STOP-
OUT

Discrete Logic
E STOP, Machine Sensors

PWM
Drive

Axis Control 2

Encoder
A Quad B + Z

Limit +
Limit -
Home
Amp-Fault

E Stop

Power Up

RESET

Machine
Status
Sensors

HW1: One axis power drive, HW2: one axis 4 channel encoder

Figure 2. Example of an Controller

The application used for this purpose is programmed numerical control for a two-axis lathe. The
axis components are assumed be the same for each axis and consist of a PWM motor drive, an
amplifier enable control, an amplifier fault status signal, an A-QUAD-B encoder with marker
pulse and switches for home and axis limits. The spindle drive components are assumed to
provide a facility for setting spindle speed and direction and to start and stop spindle rotation.
The machine sensor system is assumed to consist of a set of analog and digital sensors
monitoring coolant temperature and oil pressure. The machine safety system is assumed to
consist of a set of input switches monitoring E-Stop, Power-Up and Reset. The control pendant is
assumed to provide an operator with a simple set of control functions including part program
selection, Cycle Start/Stop, Feedhold, Feedrate Override, Manual Data Input and Manual
Jogging. The machine part programs are assumed to be in EIA RS274D format. The control
pendant is assumed to display machine status to an operator including indication, machine
modes, program status and machine diagnostics.

This application is used as a reference example for open architecture modular controllers. Some
possible modifications to the reference application that would be instructive are:

• add tachometer feedback to the axes/add IO modules/control loop module;

• use SERCOS drive instead of PWM/replace IO modules/replace control loop module;

• add secondary linear slide/add IO modules/add control loop module/ replace axis group
module;

• add spindle position control/add IO modules/add control module/replace axis group
module;

• add tool changer/add IO modules/add logic control module;

• add error compensation/replace IO modules;

• add probing capability/add IO modules/add logic control module;

• add closed loop scanning probe/add IO modules/replace module;

• add acoustic emission sensor for tool breakage/add IO module/add logic control module;

• add real time image recognition of surface finish/add IO add logic control module;

• add LAN communications functions to support part program upload part program
download, remote status monitoring and remote data acquisition;

• replace human interface face module with industry de facto standard operator interface;

• replace part program interpreter to support CL data generated from AutoCad or
ProEngineer.

The figure shows seven major systems that make up the components of open architecture
modular controller. These are the IO system, control loop system, logic control system, axis
group, part program interpreter system, human interface system and the task coordinator system.
Each system is made up of one or more replaceable modules. The modules are tied together
through exposed interfaces. A key concept in modular open architectures is that the system may
be incrementally adapted to changing requirements. The three mechanisms for adapting the
system are to add modules, to replace modules and to reconfigure modules by reconnecting the
interfaces

The IO system consists of one or more IO modules. Each IO module represents a sensor or
actuator. The IO module interfaces are used by control loop modules, axis group modules, logic
control modules and human interface modules. Sample timing for IO modules is controlled by
the task coordination module.

The control loop system consists of one or more axis control loop modules. Each axis control
loop module requires two or more IO module interfaces. These represent sensor input and
actuator output. Each axis control loop module provides a command interface that is normally
connected to an axis group module. Control loop modules may provide additional interfaces that
allow features such as status information for the human interface, monitoring/tuning of internal
parameters, real time data collection and real time algorithm modification. Control loop module
operation is to compute an algorithm to generate a new actuator command based on current
sensor readings, commanded set points and machine state.

The logic control system consists of one or more logic control modules. The system normally
contains a large number of logic control modules with a variety of requirements for IO module
interfaces. Logic control modules provide an interface to the task coordinator module that allow
status and event transition information to be conveyed. Logic modules may provide an interface
that would normally provide status information to the human interface module. Logic control
modules may also provide an interface to be used by part program interpreter modules. Logic
control module operation is distinguished from loop module operation by the fact that logic
control modules execute Boolean equations to generate new IO output values and detect event
transitions based on IO inputs and machine state.

The trajectory generation system consists of one or more axis group modules. An axis group
module requires at least one control loop interface for each coordinated degree of freedom in the
computed trajectory. It may also require additional control interfaces if it supports
algorithmically related motions (electronic gearing). An axis group module may also require one
or more IO module interfaces to provide sensor modified generation such as impedance control.
An axis group module provides at least two interfaces one of which is normally connected to
either a task coordinator module or part program interpreter, and the other of which is normally
connected to the human interface to provide manual jog capabilities.

The part program interpreter system consists of one or more part program interpreter modules. A
part program interpreter module requires one or more trajectory modules interfaces. A part
program interpreter may also require one or more logic control A part program interpreter uses
several system infrastructure services - primarily file system services. A part program interpreter
provides an interface that is normally connected to a human interface module.

The human interface system consists of one or more human modules. The collection of modules
in the human interface system will normally require at least three interfaces - an interface to a
part program interpreter, an interface to an axis group for manual jog capabilities and one or
more IO module interfaces for low level interactions such as button activation, feedrate override,
etc. The human interface system may also use any interfaces available for system modules to
supply status information.

The task coordinator system normally consists of one task coordinator module. A task
coordinator module may require a variety of logic control module interfaces to detect event
transitions and evaluate system state. The task coordinator module operation is to system state
and to schedule execution of system modules. A task coordinator may provide an interface
normally used by the human interface module for machine status information.

PART 1: GENERAL INFORMATION 1

TECHNOLOGIES ENABLING AGILE MANUFACTURING 
INTELLIGENT CLOSED LOOP PROCESSING 
Part 1: General Information

1 General

1.1 Scope

This part of the TEAM API specification constitutes part 1 of a series of specifications for
intelligent closed loop processing and should be read in conjunction with the other parts of the
series. This TEAM API specification applies to closed loop processing - including module
interface programming; command, control and communication; infrastructure and system
services; and the scaling of functionality based on selected equipment and desired application.
The purposes of this specification are:

− to establish the definitions and identify the principal components relevant to closed
loop processing;

− to specify the requirements for scaleable service, infrastructure, and resources;

− to define the behavior, communication and input/output as specified by an Application
Programming Interface (API) for the closed loop processing modules;

− to give examples and application guidelines to the user.

 1.2 Object of the Specification

The key objective of defining an API specification is to enable the design and implementation of
an open, modular control architecture which:

− provides a migration path from the existing practices;

− allows an integrator/end user to add, replace, and reconfigure modules

− provides the ability to modify spindle speed and feed rate according to some user
defined process control strategy

− allows access to the real-time data at a predictable rate up to the servo loop rate

− allows full 3-D spatial error correction using a user defined correction strategy

− decouples user interface software and control software and makes control data
available for presentation;

− provides communication functions to integrate the controller with other intelligent
devices

PART 1: GENERAL INFORMATION 2

− increases the ability of 3rd party software to interoperate with the long-term goal of
true plug-and-play. For example:

− Replace a PID Control Law with a more sophisticated Fuzzy Logic Control Law

− Collect servo response data with a 3rd party tool, and set tuning parameters in the
appropriate Control Law Module

− Add a force sensor, and modify the feed rate according to a user defined process
model

− Perform high resolution straightness correction on any axis

− Replace user-interface with third party package and configure identically to
existing machine user-interface

1.3 Object of Part I

This part of the TEAM API specification gives the following information:

− the rationale and need for an Open Architecture specification;

− the basic requirements of an Open Architecture controller;

− the definitions and the principal characteristics relevant to a common set of open
architecture module definitions. The term module will be considered equivalent to the
notions of primitive and aggregated components and will be defined with class
definitions.

− the steps in general Life Cycle to build a Open-Architecture controller;

− the roles of the major participants;

− the responsibility of the TEAM API working group;

− some examples to clarify the general API specification model.

1.4 Normative References

ISO/IEC 9506-1 1990, Industrial automation systems - Manufacturing Message Specification
(MMS) - Part 1: Service Definition.

ISO/IEC 9506-2 1990, Industrial automation systems - Manufacturing Message Specification
(MMS) - Part 2: Protocol Definition.

ISO 10303-41 Industrial Automation Systems and Integration Product Data Representation
and Exchange - Part 41: Integrated Resources: Fundamentals of Product Description and
Support.

ISO 10303-42 Industrial Automation Systems and Integration Product Data Representation
and Exchange - Part 42: Integrated Resources: Geometric and Topological Representation.

PART 1: GENERAL INFORMATION 3

IEC 1131-3 Programmable controllers - Part 1: General Information, Oct. 1992.

IEC 1131-3 Programmable controllers - Part 3: Programming Languages, March 1993.

NCMS (National Center for Manufacturing Sciences), “Next Generation (NGC)
Specification for an Open System Architecture Standard (SOSAS), Revision 2.5”, August
1994.

EIA Standard 441, “Operator Interface Functions of Numerical Controls”, Electronics
Industries Association, Washington, D.C., January 1979 (Reaffirmed July 14, 1992)

EIA Standard - EIA-274-D, Interchangeable Variable, Block Data Format for Positioning,
Contouring, and Contouring/Positioning Numerically Controlled Machines,” Engineering
Industries Association, Washington, D.C., February, 1979

2 Definitions

The TEAM API Workgroup use the following definitions for the following terms. Terms that are
more specific to closed loop processing are defined in the corresponding parts in order to make
them self-readable.

Application Programming Interface

The protocol by which one interacts with a module.

Class

An abstract data type and inheritances. For example, the Class SERCOS-Driven Axis
describes objects in the running machine controller. A 3-axis mill would have three
instantiations of that class; the 3 objects described by that class.

Configuration

The specification of a module mapping it from a general solution set into a specific
solution. Compare: integration.

Design

A description of a system model in terms of classes and APIs (consisting of member
function descriptions associated with classes).

Integration

The capability to allow the connection and cooperation of two or more modules within a
system. Compare: configuration.

PART 1: GENERAL INFORMATION 4

Module

A piece of the system that is sufficiently defined such that it can be replaced by another
piece, by a third party, with same service through the same interfaces, possible states, and
conditions of state transitions;

Object

An instantiation of a class.

Object-Oriented Program

A collection of objects interacting through a set of published APIs (Application
Programming Interfaces).

Plug and Play

The ability to replace a TEAM API specified module in a control system with a complying
version from any supplier and achieve the same or better results.

Proxy Agent

A set of objects that allow the crossing of address-space or communication domain
boundaries. The class describing a proxy agent uses the API of some other class (for which
it is a proxy) but provides a transparent mechanism that implements that API while
crossing a domain boundary.

3 Glossary

Terms already defined in other standards that are frequently used in this specification are listed
in this clause for convenience and comprehension.

Component

Adopts the SOSAS concept of a reference architecture consisting of primitive and
aggregate components. Components are defined as abstract building block elements that
describe functionality and communication. The application architecture is built from these
components. Components have the following attributes:

− responsibility;

− peer-to-peer or collaborative relationships;

− behavior (specific functionality encapsulated by the component);

− messages, that is, the complete set of specific instructions necessary for invoking all of
the behaviors encapsulated by the component;

− Application Program Interface(s) or the interfaces a component uses specifically to
access services provided by the SOSAS notion of an Open Systems Environment.

PART 1: GENERAL INFORMATION 5

TEAM will use the term module to refer to both a primitive and an aggregate component.

4 Development and Integration Life Cycle Model

Openness provides benefits and savings through flexibility and extensibility - but openness alone
does not achieve interoperability. Application programming interfaces for one vendor’s open
system will generally not run under another vendor’s system. Openness is but the first step
towards “plug-and-play” interoperability which in turn is dependent on some form of a standard.
Requirements for a standard “open solution” include the ability to allow the development of
controllers by users or system integrators who want to piece together their own systems
component by component, modify the way their controller perform certain actions, apply their
modifications to another controller, or start small and upgrade as they grow.

Control systems are built as a set of connected components that require assumptions as to the
scope and operation of interdependent components. The development of a general set of control
system components assumes that each module can span a broad range of applicability. To build
an application system from the general component set, configuration of individual modules and
the integration of modules must be specified, tested and evaluated in the development of “plug-
and-play” systems. Describing the general API for a module is extensive. Additionally,
describing the services and levels of efforts of dependent resources requires a Life Cycle in order
to understand the roles and relationships of elemental and aggregate components in the
developmental process. The TEAM API Workgroup has developed a Life Cycle that divides the
TEAM API Development and Integration Process into five phases:

1. Module Definition Phase,

2. Module Creation Phase,

3. Module Configuration,

4. Module Integration, and

5. System Initialization.

More detailed steps of the TEAM API Development and Integration Process is shown in the
series of figures 3-7. The TEAM API specification realizes that in addition to the standards
developers - such as the TEAM API workgroup - there are other perspectives within the model:

− control component development

− system integrator

− users

Each perspective will be further reviewed within the Life Cycle.

PART 1: GENERAL INFORMATION 6

4.1 Control Component Developers’ Tasks

Control vendors provide component products and support for hardware or software modules. For
control vendors to conform to an open architecture specification, they would be required to
conform to several specifications including:

− module class specification;

− system service specification;

− customer specifications.

A mechanism similar to the NGC profile is required to describe the system service specification
that would include such areas as platform capability, control devices, and support software. The
system services describe the platform and infrastructure support (such as communication
mechanisms) and the available resources (disks, extra memory, etc.) Computer boards in turn
have a device profile that includes CPU type, CPU characteristics and the CPU performance
characteristics. Included within the profile is the operating system support for the CPU. Sensor-
effector devices such as controller cards or drives, would subscribe to a general electro-
mechanical classification and then provide a more detailed capability feature profile.

Services Required
from

Other Modules

Define
Modules &

Services
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Services
Provides

(Class Def.)

Module
Source
Codes

Module
Definition

Binary
Modules

Module Def.
for

One Module

B

C

Standard
Controller
Services

Custome Services

System Services

A

From
Figure 4

To Figure 6

To Figure 6

Figure 3. Life Cycle - Control Component Suppliers Tasks

PART 1: GENERAL INFORMATION 7

4.1.1 Services Required from Other Modules
Created by: (Control Component Providers)

Definition: Parameterization and definition of services that are required from other
modules

Fed into: Define Modules & Services

4.1.2 Services Provided
Created by: (TEAM API Specification)

Definition: Specifications of a class

Fed into: Define Modules & Services

4.1.3 Module Source Codes
Created by: (Control Component Providers)

Definition: Implementation of functions for a particular class

Fed into: Define Modules & Services

4.1.4 Define Modules & Services
Input: 1. Services Required from Other Modules

2. Services Provided

3. Module Source Codes

Action: Generate definitions of the module and create binary codes from source
codes

Output: 1. Module Definition

2. Binary Modules

4.1.5 Module Definition
Created by: Define Modules & Services

Definition: Includes the following information for a module:

• class definitions of the module

• services provided by the module

• persistent data in the module that needs to be initialized

• creation information

• services used by other modules

• resources consumed and services required by the module (including
operating system, etc.) class definitions of the module

• system services supported by the module

• other system services the module uses

• response time benchmarks (e.g., published latency)

• • items requiring configuration (interrupt lines, buffers, etc.)

Fed into: Build Module Database

PART 1: GENERAL INFORMATION 8

4.1.6 Binary Modules

Created by: Define Modules & Services

Definition: Binaries of the module (e.g., libraries or object files) ready to be
integrated into a control system

Fed into: Configure and Integrate System

4.2 TEAM API Workgroup Tasks

The Workgroup recognizes that specifications, guidelines, and implementation examples must be
developed before other parties can develop components of an open architecture system. The
specification developed so far will concentrate its efforts in defining the necessary information
and documents for the Module Definition Phase, and the resulting documents will be available
for general review and comments. The effort necessary to develop documents for the other
phases of the Life Cycle will be initiated if the feedback for the Module Definition Phase
indicates a need to continue the specification efforts.

Define
Classes A

to Figure 3

Figure 4. TEAM API Life Cycle - TEAM API Workgroup Tasks

The tasks of the TEAM API Workgroup in the “Module Definition Phase” include:

1. defining a set of required classes and their services in a controller;

2. defining items within a module that need to be configured;

3. defining services of other modules that will be required by a module (integration
information);

4. defining information that is needed to create other modules;

5. defining a standard description of configuration and conformance of a module.

The combination of each individual module’s configuration and conformance descriptions will
be a full description of the control system. The infrastructure of a controller, that includes
platform services such as timers, interrupt handlers, and inter-process communications, will be
treated as a module. Specific interfaces to system services will be explicitly specified by the
Workgroup.

4.2.1 Define Classes
Input: (TEAM API Workgroup)

PART 1: GENERAL INFORMATION 9

Action: Create Class Definitions for Standard Controller Modules

Output: Class Definition

4.3 Control System Integrators’ Tasks

The control system is built from component parts as specified by the user (as based on market
demand) by the system integrator. Many times the system integrator and the component builder
are one in the same. However, to derive the major long-term benefits of standard open-
architectures, it is necessary that the component builder and the system integrator have a clear
separation within the Life Cycle. The control component builder provides binaries (as some form
of an object library) from which the system integrator selects based upon the design criteria
(controller performance: cost, accuracy, speed, reliability, tolerances, available parts, etc.).
Figure 6 illustrates the concept of deriving two implementations based on different design and
implementation specifications. The actual Commercial Off-the-Shelf (COTS) component set is a
subset of the total available component sets.

Domain
Model

Requirement
Specification

Model

System
Design Spec.

Detailed
Design 1

Implementation
1

Detail
Design 2

off-the-shelf
Components
Set #2 (Bin)

Off-the-shelf
Components
Set #1 (Bin)

Implementation
Environment & Tool

Spec

Time

Implementation
2

Figure 5. Controller Design Life Cycle vis a vis Module

The main responsibilities of the control system integrator include:

PART 1: GENERAL INFORMATION 10

− Build Module Database

− Create Modules

− Initialize and Configure Modules

− Create System Resource Model

− Design System

− Configure & Integrate System

as illustrated in Figure 6.

B

Create
Modules

Init. & Configure
Modules

Design
System

System
Module
Database

System
Resource
Model

Configure &
Integrate
System

System
Model

Create System
Resource
Model

Build Module
Database

Module
Definition
Database

C

System
Capability
Database

System
Binary

Database

System
Initialization

Database

D

From Figure 3

From Figure 3

To Figure 7

Figure 6. Life Cycle - System Integrator’s Tasks

4.3.1 Build Module Database
Input: Module definitions of all modules to be included in the system

Action: Put information of all modules in a system into a database

Output: Module Definition Database

4.3.2 Module Definition Database
Created by: Build Module Database

Definition: Includes module definitions of all modules in the system

Fed into: Create Modules

PART 1: GENERAL INFORMATION 11

4.3.3 Create Modules
Input: Module Definition Database

Action: Select the subset and the number of instances of all modules participating
in this controller

Assign a name to each instance

Output: System Module Database

4.3.4 System Module Database
Created by: Create Module

Definition: Contains information of modules contained in the system. Includes
resource consumption information, services provided, services required, a
reference to the binaries and information needed to configure the module.

Fed into: Create System Model

4.3.5 Initialize and Configure Modules
Input: System Module Database

Action: Give initial values to persistent data for each module selected in the
system

Output: System Module Database

4.3.6 Create System Resource Model
Input: (Control System Integrator)

Action: Based on the hardware and software platforms selected, the control
system integrator creates the information to be included in the system
resource model

Output: System Resource Model

4.3.7 System Resource Model
Created by: Create System Resource Model

Definition: Includes information on specified computing resources, storage resources
(e.g., memory), communication channels, etc. for a particular
implementation

Fed into: Create System Model

4.3.8 Design System
Input: System Resource Model

System Module Database

Action: Verify module resource consumption against system resource definition

Allocate modules to resources

Define interaction of modules to IPCs

Assign timing information

Create prototype implementation and test; iterate if necessary

PART 1: GENERAL INFORMATION 12

Output: System Model

4.3.9 System Model
Created by: Design System

Definition: Includes information on:

description of resource and performance assignments

Fed into: Configure & Integrate System

4.3.10 Configure & Integrate System
Input: System Model

Action: Execute a “make file”-like sequence

Execute “compile” and “link”-like tools

Output: System Capability Database

System Binary Database

System Initialization Database

4.3.11 System Capability Database
Created by: Configure & Integrate System

Definition: Contains processor and memory capabilities for load balancing; node,
network and module connection information.

Fed into: Start System

4.3.12 System Binary Database
Created by: Configure & Integrate System

Definition: Maintains information on load images, executables, libraries or system
binaries

Fed into: Start System

4.3.13 System Initialization Database
Created by: Configure & Integrate System

Definition: Contains startup information for each module in the system for
initialization, includes initial values of init files of each module and
persistent data

Fed into: Start System

4.4 End Users’ Tasks

The user is responsible for creating application programs for the control system. The user can be
expected to handle startup and shutdown operations of the controller. The user can be expected
to test and debug application programs on the controller. Different classes of users can be
expected. Some can be tasked with program generation, some with maintenance and others with
operation. A run-time system configuration registry would be expected for handling the general

PART 1: GENERAL INFORMATION 13

startup and shutdown sequencing and specific system customization. The end user’s tasks, as
illustrated in Figure 7, can be summarized as: start system, create application programs, and run
system. Other user tasks are beyond the scope of this discussion.

.

D Start
System

Run
System

System
Directory

Application
Programs

Create
Application
Programs

From Figure 6

Figure 7. Life Cycle - End Users Tasks

4.4.1 Start System

At this time, an integrated controller that meets the requirements is available. The controller is
integrated on a machine or equipment it will control. Desired operation sequences are specified
in these application programs. The control system is also at a stage that it can be modified,
purchased, and tested by users, and integration of sensors, video, Autocad, or other commercial
packages and equipment is doable.

Input: • System Capability Database

• System Binary Database

• System Initialization Database

Action: Test and debug control system

Output: System Directory

4.4.2 System Directory
Created by: Start System

Definition: Directory of all names in the integrated controller

Fed into: Run System

4.4.3 Run System

At this stage, controller has been tested and debugged, and user programs for both discrete and
motion applications can be executed.

Input: • System Directory

• Application Programs

PART 1: GENERAL INFORMATION 14

Action: Execute Application Programs

Output: (Applications)

4.4.4 Create Application Programs
Input: (End Users)

Action: Write application programs

Output: Application Programs

4.4.5 Application Programs
Created by: Create Application Programs

Definition: Application programs

Fed into: Run System

PART 1: GENERAL INFORMATION 15

Annex A

 (informative)

Specification Modeling Overview

The modeling strategy is to use component based technology for integration of off-the-shelf
components. This strategy implies the need for strongly defined Life Cycle considerations -
design, configuration, integration and extensibility. Interface Definitions use the ROSE class
definition format. ROSE is a CASE tool from Rational Software Corporation, that generates
C++, ADA or Smalltalk code. The Object Management Group Interface Definition Language
may be used in follow-up modeling work. Validation of the initial API specification models will
be done on several testbeds (e.g., NIST Enhanced Machine Controller testbed, and the University
of Michigan EECS).

A.1 CONFIGURATION - Base and Derived Class API Strategy - Subclassing

A major obstacle to defining a suitable specification is limiting the scope to a reasonable level of
effort. To achieve reasonably general models, subclassing will be used to scale the interfaces.
The specification model will start with a minimum API specification and then extend the
interface to meet specific needs, e.g., PID, FF, or Neural Net.

For example, suppose we have a loop closure module as represented below in Figure 8:

X Output

Actual

Σ
Following

Error Control
Law

Figure 8. Minimum or Base Class for Loop Closure

Within this example, the interface has the following io points: Output, Actual, and X which
have the associated functions to manipulate the contents:

PART 1: GENERAL INFORMATION 16

• X has set_command, get_command

• OUTPUT has set_output, get_output

• ACTUAL has set_actual, get_actual

A class function definition such as close_loop(), is required to trigger the control law to update
the current set point. One specializes (or derives in C++ terminology) a application module from
this general loop closure with a specific control law such as PID or FUZZY logic. A PID module
would then inherit the functionality from the loop closure base class and derive its more
specialized control law functionality, so that one sees:

PIDmodule = LoopClosureInherited functions + PIDSubclass functions

where the PID adds the following io points to the loop closure base class: X dot, X dot dot,
Command Offset, Output Offset, Scaled Output, Following Error, etc. as illustated in Figure 9.
The subclass functions to manipulate the contents of these IO points are: set/get_dt_command,
set/get_dt2_command, set/get_command_offset, etc. which matches wires in/out of the PID.

To set the gains and scaling parameters that effect the control law computation (e.g., P, I, D, and
KVF), one would use the set/get_PID_prop_gain, set/get_PID_int_gain, set/get_PID_der_gain,
and set/get_dt_command_gain. Once again the class function definition close_loop(), is used to
trigger the control law to update the current set point, and a series of class functions such as
scale_command_offset() would now be required to trigger the associated control law scaling
functions.

Σ

X

Scaled

Actual

PID

Kactual

Following
Error

Scaled
Actual

KAF

X KVF

X KCF

.

.. KCO

Command
Offset

KOO

Output
Offset

OutputOutput

KAO
Actual
Offset

Corrected
Actual

Σ

Σ

Figure 9. PID Derived Class Line Loop Closure

PART 1: GENERAL INFORMATION 17

A.2 INTEGRATION - Module Connections

Effective integration of modules is fundamental to the open architecture. The ability to build a
controller of integrated components is similar to piecing a puzzle together. 2 We will assume a
controller consists of modules that are either standalone processes with a communication channel
for a connection; or are constructed as a cyclically executing task (ibid, agent) using component
modules. In general, one must assume that a general framework is available in which to build a
controller. Figure 10 illustrates one example framework in which component pieces are used.
Within the example framework, there are several useful capabilities. First, substitution of a
different component piece within the framework puzzle - such as a closed loop module - is key to
plug and play solutions. Second, the ability to rewire an IO connection, such as that between the
segment and set-point generator, to use either a direct message connection or insert an extra
component piece to allow indirection through some distributed communication mechanism, such
as shared memory mailbox or socket. A potential rewiring solution could use different
Dynamically Linked Libraries DLL) so that one library does a direct class method call while the
other library uses PROXY AGENTS so that when a class method is invoked it understands to
access shared memory.

CLoop 2

Servo
Process Action

 D/A
 I/O

Sensor

Thermal

K. Filter

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

S/E Consortium
 Net

 A/D
 I/O

“Segment

IO
(CMS)

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

(Generic
or

Application-Customized)

CLOSED LOOP COMPONENTS
SENSOR COMPONENTS

Traj1
kinematics

Traj2 II

kinematics

CLoop 1

Traj
dynamics

kinematics

TRAJECTORY COMPONENTS

OMAC Integration Framework

Generator”

“Set Point
Generator”

Figure 10. Integration Framework (Draft)

2. This analogy is drawn from the Taligent OS concepts. See: ``Building Object-Oriented Frameworks”, White Paper, Taligent, Inc.

1994

PART 1: GENERAL INFORMATION 18

A major objective of the specification is to allow the addition or change of control laws and
control loops. As an attempt to meet this objective, we will illustrate how to build a one-axis
“closed loop process” that cyclically executes. We will suppose that loop_closure modules are
commercially available that meet our controller environment profile. We will further assume that
API definitions will resolve the naming and instantiation conventions (either direct or with proxy
agents) for object classes io1, loop_closure1, axesgrp1. Then, we can write the following code to
produce our “servo” process. Once we attach a thread of execution (such as timing, priority,
stack size, etc.) we have built an agent. The servo process reads and writes to all the relevant io
connection points, and at the same time calls the loop_closure module to generate the next set
point. We will assume that all the io connection points have been established by another routine.

// Most basic cyclic process - could be C++ template
closed_loop_process(){
// Read the current encoder value with IO system
io1.get_encoder(&value)

// Set the next actuator value
loop_closure1.set_actuator(value)

// Get the next value from the axis group
axesgrp1.get_axis1(&value)

// Use traj generator value to set next closed loop command
loop_closure1.set_command(value)
...

 // Use state to cause module to compute next value
if(state == running) loop_closure1.close_loop();
 ...

// Read CLC commanded output after it finishes cycle
 loop_closure.get_output(&value);

 // Put out value to DAC, (scaling done by io system)
 io1.put_DAC1(&value);
}

// initialize parameters
closed_loop_init(){ }

// read commanded modes, change if necessary
closed_loop_mode(){ }

